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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-266

ANALYSIS OF ONE-DIMENSIONAL ION ROCKET WITH GRID NEUTRALIZATION

By Harold Mirels and Burt M. Rosenbaum

SUMMARY

A one-dimensional analysis is made of an ion rocket employing three
grids. The first grid emits ions, the second accelerates the ions to a
velocity beyond the desired final value, and the third decelerates the
ions to the desired final velocity and neutralizes them by the emission
of electrons. The analysis neglects random thermal motion of the ions
and electrons.

The ion beam between the ion emitter and the neutralization grid is
determined, as is the mixed ion-electron beam downstream of the neutral-
ization grid. The jon-electron beam is found to have a small-wavelength,
small-amplitude periodic wave structure. A similar ion-electron-beam
wave structure may exist upstream of the neutralization grid if this grid
is relatively far downstream of the accelerating grid.

The forces on the individual grids and the overall thrust and spe-
cific impulse of the ion rocket are found using momentum-integral con-
cepts, which are discussed in an appendix. It is shown that the ion-
emitting grid can experience only a drag force, the accelerating grid
can experience a drag or a thrust force, and the neutralizing grid can
experience only a thrust force.

The analysis also indicates that the spacing between the accelera-
tion and neutralization grids does not affect the thrust and specific
impulse of the ion rocket. In particular, when the spacing between these
grids is relatively large, electrons nmove upstream from the neutralizing
grid and eliminate the tendency toward ion current reversal or excessive
beam spreading that would otherwise occur.

INTRODUCTION

Considerable interest exists in the utilization of ion rockets as
low-thrust, high-specific-impulse propulsion units for space flight.
References 1 to 9 are recent examples of mission studies (refs. 1 to 3)
and of ion-rocket design and performance studies (refs. 4 to 9).
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The current NASA Iewis Research Center program relating to ion-
rocket design and testing is outlined in reference 4. As part of that
program, theoretical one-dimensional analyses have been made concerning
the acceleration and mixing of ion and electron beams. The results of
these one-dimensional analyses are presented herein and in the concurrent
investigation reported in reference 10.

Reference 10 considers the effect of thermal motion on ion and
electron acceleration and deceleration, the neutralization of an ion
beam by mixing with an electron beam, and the electrical breakdown and
manufacturing tolerance limitations on accelerator design. The advan-
tages of using an "accelerate-decelerate’ design principle in ion and
electron accelerators are also discussed (see also refs. 4, 8, and 9).
Reference 10 does not treat a specific ion-rocket configuration, but
rather considers the performance of various types and arrangements of
ion and electron accelerators that may be incorporated in an ion-rocket
design.

In the present report attention is focused on a specific one-
dimensional configuration that employs the accelerate-decelerate princi-
ple and consists of an ion-emitting grid, an accelerating grid, and a
decelerating-neutralizing grid. Details of the resulting ion-beam and
electron-ion-beam flows are discussed. The object is to give a detailed,
integrated discussion of a basic ion-rocket configuration.

The application of the momentum-integral method for computing ion-
rocket thrust is discussed in an appendix and is employed in the body of
the report to determine overall ion-rocket thrust and the forces on the
individual grids. A general discussion of the behavior of one-dimensional
ion or electron beams is given in other appendixes.

The one-dimensional beam solutions presented herein neglect random
thermal motion. That is, it is assumed that all the ions or electrons
at a given station have the same velocity. For a mixed electron-ion
beam the local electron velocity differs (in general) from the local
ion velocity. In the case of an electron or ion beam with current
reversal, the upstream and downstream moving particles have the same
local speed.

ANALYSTS

The one-dimensional configuration studied herein is indicated in
figure 1(a). The corresponding voltage variation V is given in figure
1(b). (Symbols are defined in appendix A.) Ions are assumed to be
emitted with essentially zero velocity by a grid at =x,. The ion-
emitting grid is considered to be at zero voltage so that the local ion
velocity at any station is proportional to 4/-V (appendix B).
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The ions emitted at X, are accelerated (to a value above the

desired final value) by an accelerating grid at x = 0. A grid at

X = X, both decelerates the ions (to the desired final velocity) and
neutralizes them (by emitting electrons in a one-to-one correspondence
with the oncoming positive charges). Despite the dual role of the latter
grid (i.e., deceleration and neutralization of the ions), it will be
referred to as the neutralization grid. Downstream of x, there is a
mixed ion and electron beam (fig. 1(a)) having small-amplitude, small-
wavelength cyclic variations of V with x (as will be derived). It is
initially assumed that the neutralizing grid is sufficiently close to
the accelerating grid that V increases monotonically from x = 0 %o

X = X, as indicated in figure 1(b). The resulting electric field pre-
vents electrons from moving upstream of the neutralizing grid.

In the following sections, details of the ion beam in the acceler-
ation (x, < x < 0) and deceleration (0 < x < x,) regions are presented
assuming that the random thermal motion of the ions is negligible. The
mixed ion-electron beam downstream of the neutralizing grid is then
analyzed. Next, expressions for the forces on the grids and the overall
thrust and specific impulses are found. Finally, an analysis is pre-
sented for the case wherein the neutralizing grid is relatively far
downstream of the accelerating grid, resulting in electrons being pres-
ent between these grids.

The mks system of measurement is used throughout. Subscripts +
and -~ are used only when it is necessary to distinguish between ion
and electron properties, respectively.

Ion Flow in Acceleration and Deceleration Regions

The equations of motion for a one-dimensional ion beam are inte-
grated in appendixes B and C, neglecting random thermal motion. In
appendix B it is assumed that the ion current is in the +x direction
only, while in appendix C two-way ion currents are considered. These
solutions were previously derived in reference 11 in connection with
electron vacuum-tube performance and are summarized in other sources
(such as ref. 12). In the present section the results of appendix B
(i.e., one-way currents) are applied to discuss the flow in the acceler-
ation and deceleration regions of the ion rocket of figure 1.

Appendix B utilizes the following nondimensional variables for V
and x, respectively:

{B5a)

o
!
1=

o (B5Db)
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where
Vo

4 -
- 5 €oN-2nV, 7 (B6)

I

Here Vg 1is the voltage at x = 0, L 1is the spacing between the emitter
and accelerator grids, and Jjy is the maximum (space-charge-limited)
current, which results from an electrode spacing L and voltage differ-
ence Vg. Equation (B6), which is sometimes referred to as Child's law
(ref. 13), gives the maximum current that can pass through the ion rocket
(for given VO,L). Note that ¢ =1 and £ = O at the accelerator grid.

Integral curves of ¢ against &, from appendix B, are presented
in figure 2 for ¢ > 0. Two types of integral curves, referred to as
type C and type D, are noted. Type C integral curves are characterized
by the fact that there is a point (£*,¢*) on each of these curves at
which ¢' = 0. Type D curves do not have this critical point. The
parameters ¢%¥ and B are used to identify particular type C and D
curves, respectively (see egs. (B10) for relation between ¢¥%, B, and i
mé). In figure 2, curve a is the envelope of the right-hand branches of
the type C curves, curve b is the right-hand branch of the ¢¥ = 0 inte-
gral curve, and curve d is the locus of the minimum points on the type C
curves. Expressions for these curves are given by equations (BlZ),
(B14), and (B15). The type C and D integral curves for £ < O are the

mirror image of those for & > 0. Further details are given in appendix
B.

The ion flow in the accelerating and decelerating regions of the
ion rocket can be discussed in terms of the type C and type D integral
curves of appendix B. This discussion follows.

Acceleration region £, < & < 0. - The value of £ at the ion-

emitting grid is
X ry )
g = ._e -‘]—- = - —'Q- 1
€ L IM JIM (1)

Since 0 < j/jM <1, then -1<E§&, <O0. The voltage and velocity are
assumed zero at this station so that

Qe = Vg T 0 (2)

A1l the type D integral curves and also the type C integral curve for )
¢* = 0 are possible solutions for the accelerator region (see sketch
(

a)).

fRI1IC=T



(a)

For &g = -1 (i.e., j = Jjy), the ion flow is defined by (from eq.
(B11l) with o* = 0)

o=+ 8)¥? (3)

which is Child's result (ref. 13). Note that ¢', and therefore the
electric field, is zero at & = -1, which confirms that equation (3)
corresponds to space-charge-limited current flow.

For -1 <&, <0 (i.e., 0< j/jm <1), the variation of ¢ with
¢ is (from eq. (B16))

t = (A9 - 2A/BIAND + ABy - (1 - 2A/B,) AL + A/B, (4)

The subscript A is used for B8 to distinguish type D integral curves
in the acceleration region from type D integral curves in the decelera-
tion region. The relation between &, and Bp is (letting £ = &g

and ¢ = 0 in eq. (4))

Ey = -252/4 - (1 - 2@),\}1 + AfBy (5)

Equations (4) and (5) apply when the ion emitter is emission-limited.
Note that equation (4) reduces to equation (3) for B, = O.

Deceleration region 0 < & < én. - The integral curve describing

the ion flow in the deceleration region depends on the voltage and loca-
tion of the neutralizing grid. For the present, it is assumed that

0< & <tg(oy) (6)

where

ta(e) = (1 + 24/ AL - Ao (7)



is the equation of curve d in figure 2 (see eq. (B15)). That is, the
neutralizing grid is assumed to be sufficiently close to the accelerating

grid so that &, is upstream of curve d (as indicated in sketch (v)). -
Under these conditions, ¢ decreases monotonically from ¢ = 1 at

£E=0 to o=@, at & = E;. The resulting electric field prevents

electrons from moving upstream of the neutralizing grid. The beam in

P
A b
= —
s(g = ﬁd(CP)
an - \
)
"//
0 e 1 -t
{(v) .

the deceleration region contalns only ions, and the type C and D integral
curves apply. The case where £, 1s greater than gd(¢n) is discussed
in the section preceding CONCLUDING REMARKS.

The variation of & with ¢ for type C flows is (from egs. (Bll))

t - % = (A9 + 20/0FIWAD - AJo¥ (8)
where
%= (1+ 2 A/TINT - NTF

For type D flows (from eq. (B16))

£ = (W - 2By AT + NBp + (L - 2a/BpAL + By (9)

The integral curve corresponding to a given (§n,¢h) is found by substi-
tuting (§,,9,) into equation (8) or (9) and solving for @* or Pp.

Flow Downstream of Neutralizing Grid

The neutralizing grid emits electrons in a one-to-one correspondence
with the oncoming positive charges. As a result there is a mixed
electron~ion beam downstream of &, (fig. 1). This mixed beam is now

analyzed assuming that the electrons are emitted with essentially zero




L=

velocity and that the electron current is space-charge-limited at §&j.
It is further assumed that no electron-ion recombination occurs. Sub-
seripts + and - are used to differentiate ion and electron proper-
ties, respectively. Quantities such as pq and 7 = pq/pm are positive

or negative for ions or electrons, respectively. Similarly, current
density Jj = pqy is a signed quantity, the sign depending on the sign

f d .
of p, end v

Downstream of the neutralization grid the ion current J, equals
the negative of the electron current j_ (assuming steady state), so that

3y = (pgv), = -3_ = -{pgv)_ (10)
The velocity of the ions is (egs. (B3) and (B5a))

vy = A2, Voo (112)

Similarly, the velocity of the electrons is (assuming v_=0 at
?=9,)

v_ = Al-en Voo - o) (111)

Poisson's equation can then be written as

a% _ (pq-r) * (pq—)
2 €OVO

dx
= s ( %n ?E) (12)
IR NE=N ‘\}q’n 7N

N, = 1 A
-1_ 1835 A.W.

where

5= <1 (13)

The symbol 2z represents the number of charges per ion (which can be
taken to be 1), and A. W. is the atomic weight of the ion. For x = 1,
& represents the ratio of the mass of an electron to that of an ion.
In general, & is very small.

Equation (12) is to be solved for ¢ subject to the boundary
conditlons

o(t,) = @, (14a)



p' (k) =0 (14v)

where equation (l4b) corresponds to space-charge-limited electron emission

from the neutralizing grid. If recombination of ions and electrons is
considered negligible, j, 1is constant in equation (12) and may be taken
to equal the ion current in the acceleration and deceleration sections

of the ion rocket. The neglect of recombination is later shown to be
valid.

From physical reasoning it is expected that the electron velocity
in the beam will be of the same order of magnitude as the ion velocity
at £, so that (from eq. (11))

o, -9
L = 0o(d) (15)
Pn

For & small, ¢ departs only slightly from ¢, and a perturbation
method of solution is possible. Let

(pi =1 - 8 + 0(8°) (16)

Introduce the new independent variable

: 3/4 X -
e - 2 A& 1\ l(__"e) (17)
3 IM M \Pn Jo L
Substituting equations (16) and (17) into equation (12) and neglecting
terms of order & compared with 1 yield
o _
at?

with the boundary conditions (from eq. (14))

©x

Sl

-1 (18a)

(@)p_g = (a2/at) g = 0 (18p)

Integration of equations (18) yields

NN NPV (19)

Consideration of equations (18a) and (19) shows that the curve of &
against £ is cyclic having a minimum point at ¢ = O and a maximum
point at ® = 4. Integrating equation (19) shows that, for the first
half cycle,

£) O =iT



uM=-4a

0<t< A2

¢ =2 2sin'l4/g-4[24/5(2—«/5) {o<<»<4 (20)

The variation of { with ¢, for the remaining cycles, is found by
symnetry. The curve of ¢ against ¢ is indicated in sketch (c).

4 —
3
(o) 2 —
1
| | | l | | | J
0 1 2 3 4 5
.
- e
L (c)

Thus, there is a standing wave in the ion-electron beam with a wavelength

AL = 24/2 x

which corresponds to the physical distance Ax = A given by

L:s,\/é_;n: q)3/4 (_‘E_IV_I /\/g (21)
L n Jd /4

Unless (Jjy/3)y >> 1, the vavelength N is small compared with L. For

current designs, L is of the order of 1 centimeter (ref. 4). Thus, the
assumption of no recombination appears to be valid, at least for several
periodic variations of the potential (see also ref. 10).

To the present approximation, the ion velocity, referenced to the
ion velocity at &, is (eqs. (1la) and (16))

9_='1-§5<1>+o(62) (22)

Vi
(v+5n Pn
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Thus, the ions move with essentially the constant velocity (V+)n' Peri-
odic decreases of ion velocity, from the (V+)n value, are of order &.

The electron velocity, referenced to (v,_),, is (egs. (11), (13), and (16))

—(?r%; - 4/%? = A [1+ 0(3)] (23)

Since A/E. varies from O to 2, the electron velocity varies periodically
from a value of zero to a value equal to twice (V+)n- The electric
field, referenced to -VO/L (vhich is & measure of the electric field in
the accelerator) is (from eas. (16), (17), (19), and (B2))

et A/(ﬁ)@&“dﬁ/ﬂfﬂ —B) B[ + 0(5)] (24)

for do/d§.§ 0. The electric field, as expressed in equation (24), is
of order 4/5- and is relatively small compared with the electric field
in the accelerator.

Reference 10 considers the case of neutralization by the mixing of
electron and ion beams. It was found that the maximum velocity which
the electrons can have, without partial current reversal, is twice the
ion velocity. The corresponding solution for the mixed ion-electron
beam, obtained previously in reference 10, is similar to that presented
herein, although the initial conditions and the derivations are somewhat
different. Reference 10 points out that the wavelength (of the standing
wave in the ion-electron beam) equals the ion velocity (v ), divided by

the electron plasma frequency, R +.

2 19 €0

Thrust, Specific Impulse, and Power Considerations

The application of the momentum-integral method for evaluating ion-
rocket thrust is discussed in appendix D. The results of that appendix
are nov used to determine the overall thrust and the forces on the ion-
rocket grids. In addition, specific impulse and electrical power
requirements are noted.

The net reactive force per unit cross-sectional area f, developed
between any two stations x, and Xg in & one-dimensional charged
beam, is (eq. (D8))

2 e
€~k
f = [_%_ - pmvz:lxm (25a)
€ E2 =B
-5 -4 (250)
X

(¢4

Todl W Put y 4
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where Xg >'xa' A positive value of f indicates that the force due to
the beam is in the +x (i.e., drag) direction. The net thrust of an ion
rocket can be found by taking x, 10 be upstream of the lon emitter

(its contribution to thrust is then zero) and taking xg to be down-
stream of the neutralizing grid. The simplest procedure is to take x
to be on the downstream side of the neutralizing grid so that E=v_ =0
(by assumption, for the present model) and v, = (vi )y = A/-21,VoPp-
Equation (25b) then gives (using eq. (B5a))

v AL (26)
# )
9 N3/ \T

as the net thrust of the ion rocket. The negative sign Indicates that
the force is in the -x (thrust) direction. The same result would be
obtained regardless of where x was taken, provided it is downstream
of x,. The specific impulse (thrust divided by the net weight-flow rate
in the neutralized beam) is (in seconds)

1 o N Vo (27)
5 T+ d)g

where g is the gravitational acceleration constant (9.807 m/secz).
The term 1 + ® appears so as to include the weight of the electrons in
the neutralized beam and is negligible in most cases.

Equations (26) and (27) indicate f ~(.jlh_d) /\/Tr;vg/ 2 ana I *A|Vy].
+

For a given mission, there is usually an optimum value of Ig resulting
in minimum propellant and powerplant weight. This fixes V,. The value
of f can be increased (for a given geometry and a given V,) by in-
creasing Vp. The ability to vary thrust and specific impulse of a given
configuration independently 1s one of the major advantages of the
accelerate-decelerate cycle (refs. 4, 8, 9, and 10). Another advantage
is that the electric field in the deceleration region prevents electrons
from entering the ilon accelerator and interfering with ion emission and
acceleration therein.

The force on each individual grid is most easily found by taking

Xy, and x, to be infinitesimal distances upstream and downstream of the

grid, respectively (appendix D). Assuming there are neither flow nor
electrical forces upstream of x,, the force on the emitter grid is
(from eqs. (D12) and (Bl7a))

(f)xe -
AT
3 0 IM/+ T

(28)
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where B, > O corresponds to type D flows (emission-limited) in the

accelerator, and @, = O corresponds to a Child's law (¢* = 0, space-
charge-limited) acceleration. The force on the accelerating grid is
(from egs. (D12) and (Bl7a))

f

0 = - afo* - A/BA Type C (29a)
8 (i (¥9)2
9 O\yy A\L

4/35_- A/Ba Type D (29p)

Il

Here types C and D refer to the integral curve in the deceleration region.

The force on the neutralizing grid is (assuming E = v_ = O on the
downstream side)

1

(£)
*n = - Afo, + A o* Type C (30a)
8 ¢ (L V0>2
— o ~ ——
g JM+ L
- Ao, - A/Bp Type D (300)
where types C and D again refer to the integral curve in the deceleration

region. The net force on the three grids agrees with equation (26), as
expected.

Equations (28) to (30) may be of interest for structural design.
It is interesting to note that some of the grids can experience drag
rather than thrust. In particular, the ion emitter can experience only
a drag force, while the accelerating grid can experience a drag force if
equation (29b) applies and Bp > B,. The neutralizing grid will always
experience a thrust force.

Impingement of ions on the accelerator and neutralizing grids will
result in reduced thrust and specific impulse. The performance of an
ion rocket, with ion impingement, can be readily evaluated. Let Yy De
the fraction of the emitted ions that strike the accelerator grid, and
let Y, Dbe the fraction of the emitted ions that strike the neutralizing
grid. For a given @, the actual thrust and specific impulse, refer-
enced to the "no impingement" values, are then

(Is)
ac - ac - _ _
7 T 1-Y-7Y, (31)

f

Ideally, the only electrical power required in the configuration of
figure 1 is that required to "pump" electrons from the voltage at xg
to the voltage at x,. This power per unit area of the beam equals

£.S=-H
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P=J_V, =3 |Va] (322)

Thus, there is no cost in electrical power associated with the over-
acceleration of the ions. However, if some ions impinge on the acceler-
ating grid, a corresponding electron current to this grid will be re-
quired to maintain steady-state conditions. The net power required
(compared with the no-impingement value) is then

Pac _ 1
=2=1+ Y0<6£ - 1) (32p)

Thus, small values of @¢pn (i.e., large overaccelerations) can result in
large additional power requirements unless Yo 1is kept small.

Effect of Neutralizing-Grid Location Downstream of Curve d

Up till now it has been assumed that the neutralizing grid is up-
stream of curve d so that ¢ decreases monotonically from the value 1,
at £ =0, to the value ¢,, at & = &, (sketch (b)). The resulting
electric field prevents electrons from moving upstream of the neutralizing
grid. In the present section, the effect of locating the neutralization
grid downstream of curve 4 is considered. Appendixes B and C and figures
2 to 4 indicate that the integral curve will then have a minimum point
upstream of §, if electrons are not present. If the neutralizing grid
emits electrons, these will be attracted toward the potential minimum,
and the integral curve between & = 0 and £ = §; will be modified. A
particular solution for this modified integral curve is presented herein,
neglecting thermal motions of the ions and electrons.

Consider a neutralizing-grid location and potentiasl as indicated in
figure 5. If no electrons are emitted at §,, the integral curve for
0 <E<E, will be a type C integral curve as indicated in figure 5(a).
However, if electrons are emitted at ¢£,, the integral curve will be
modified. A possible solution for the resulting integral curve is indi-
cated in figure 5(b). The ions follow the type C curve ©* = ¢, from
E=0 to & =¢t3(py). From Eg(ep,) to &, there is a mixed ion-electron
beam whose potential departs only slightly from ¢,. The flow in this
region, £3(p,) < & < &,, is found as follows.

The neutralizing grid emits a downstream electron current (j-)IV
and an upstream electron current (j_)y, as indicated in figure 5(c).
Note (j_)D is negative while (j_)U is positive. The upstream current

(3_)y 1is reflected at Eg(p,) and then proceeds downstream as the elec-
tron current -(j_)U. For steady-state conditions, the electron and ion
currents, downstream of £,, are equal and opposite so that
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-(34) = (1 p + [-(32)y] (33a)
or
v (3 )p
[ER R CR (550)

The electrons are assumed to be emitted with zero velocity, so that the
ion and electron velocities are, respectively,

v, = A -2n, Vo?
- =tal-2n Voo - @)

!

v

il

The local charge density is then

P, = e (34a)
a+ A/ "ZT]+VOq)
o 'z(j_)U (54b)

- " V(e - 9)

where equation (34b) applies only for Eq(py) < & < E,. Poisson's equa-
tion for this region is

2

ad P - . pq+ + pq_
dx@ €V
J P
= + (a, A /cp&—pnq) _1’_’3) (35)
GOVO 4/ -2 +V0q)n n P
where
= 2(3.)UE 2 (368)
'J+ 1+ (j-)D
‘ZJ_SU

The parameter o lies between the limits
0<a<2 (36b)

which correspond to the limiting velues -(j_)y = 0 and (j_)p = O.
Equation (35) can be written (introducing & and ¢ as defined by equa-
tions (16) and (17) and neglecting higher-order terms)

6L5-d
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Lo o (37)
= - 1 37
at? /e

The boundary conditions at § = O are again taken to be
(s1]
(o) ( ) =0 (38)
=0
¢ g

The boundary condition (@) t=0 = O follows from the definition of &,

and the boundary condition (d@/dg) {=0 @ssumes that the electron emission
in the upstream direction is space- charge -limited.

Integration of equation (37), with the boundary conditions of equa-
tion (38), gives

= £ Af24/2(20 - A/7) (39)
where @ 1is periodic and varies between the limits
0<® < 4a? (20)

Iet f; be a value of { for which ¢ = O. The variation of @ with
t is (for half a cycle)

L -to=2 zasin'l/,/?g - A2Af8(2a - A/®) {

0<8 -8 <A2m
0< ¢ < 4a?
(41)

The remainder of the integral curve is found by symmetry. The wave-
length is

= ZA/E T
which corresponds to the physical distance Ax = A given by
A = 3/4
(j =3 2nacpn/,¢‘g (42)
Ll M
3/4

Comparison with equation (21) shows that the wavelength is « times
that of the ion-electron beam downstream of gn.

Since the potential and electric field must be continuous at
gd(¢n), and since the ions were assumed to follow a @* = @, integral
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curve, it follows that @ = d0/df{ = O at &4(p,). Hence, there must be

an integral number of cycles (denoted by the integer N) between £(9,)
and £, or

NA

—=— =t - £5(o,) (43)
()
3 /+

Substituting equation (42) into (43) and solving for a give

o = €n - §d(¢n) 1
342 @2/44/§»N

Equation (44) gives the discrete values of a, corresponding to integral
values of N, which satisfy the boundary conditions @ = d¢/df = O at

(44)

For a =2 (i.e., (J_)p = 0), all the electron current from the
neutralizing grid first moves upstresm, is reflected at éd(mn), and.
then goes downstream. The flow in the region E5(p,) <& <&, is
periodic and has a wavelength A and perturbation amplitude A/E that
are twice those for £ > §,. Substitution of o = 2 into equation (44)
defines the smallest possible value of N for a given configuration.
When o = 1 (i.e., (J_)D = -(j_)U), the wavelength and perturbation
amplitude are the same as those for ¢ >-§n. If the electron emission
at En is from circular wires, it would seem that o should be approx-
imately 1. In the limit as o~ O {(i.e., (j_)y — 0), the wavelength and
perturbation amplitude both tend to zero. However, regardless of how
small o is (so long as it is not zero), a periodic solution of the

type indicated in figure 5 will result (neglecting random thermal
motions).

The solution indicated in figure 5(b) is applicable regardless of
how far £, 1s downstream of curve d. This modification of the type C
or type B integral curves (which would otherwise occur in 0 < § < gn)
is beneficial in that it probably will reduce excessive ion-beam spread-
ing or ion current reversal. However, the presence of electrons upstream
of &, mekes the flow more complex and mey make theoretical three-
dimensional designs (designed to avoid excessive ion impingement on the
neutralizing grid) more difficult. For ion rockets employing the inte-
gral curve noted in figure 5(b), the net thrust is still given by equa-
tion (26). All the thrust is exerted on the accelerating grid. (The
ion-emitting and neutralizing grids experience no force.)
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CONCLUDING REMARKS

. The one-dimensional analysis indicates that the spacing between the
acceleration and neutralization grids does not affect the thrust and
specific impulse of an ion rocket. In particular, when the spacing
between these grids is relatively large, electrons move upstream from
the neutralizing grid and eliminate the tendency toward ion current
reversal or excessive ion-beam spreading that would otherwise occur.

lewlis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, December 9, 1959
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APPENDIX A

SYMBOLS

Units are mks throughout the report.

magnetic induction

electric displacement

electric-field strength

net force exerted on body

force per unit area exerted on one-dimensional grids
magnetic field

specific impulse

current density, pgv (signed)

emitted, reflected, and transmitted currents (appendix C)
space-charge-limited current density, eq. (BS)

sum of magnitudes of upstream and downstream currents

upstream and downstream electron currents, respectively,
emitted by neutralization grid

distance between ion emitter and acceleration grid
integer

electrical power consumption per unit beam area, eq. (32)
Maxwell stress tensor, eq. (D2)

voltage relative to ion emitter

voltage of acceleration grid

velocity, positive in +x direction

body force




X4
Xa’XB

YO’Yﬁ

> B

A""D

€0

Subscripts:
a

ac

streamwise distance
Cartesian coordinates
upstream and downstream stations, respectively

fraction of emitted ions impinging on acceleration and
neutralization grids, respectively

current ratio, eq. (36a)
parameter characterizing type D integral curves, eq. (B1ob)

values of B in acceleration and deceleration regions,
respectively

perturbation parameter, eq. (13)

dielectric constant for a vacuum, 8.854X10"12 farad/m
nondimensional variable for streamwise distance, eq. (17)
charge-to-mass ratio of an electron or ion, pq/pm (signed)
wavelength in units of x

nondimensional streamwise distance, % 4/31
M

value of £ at minimum point of type C curve
mass density, per unit volume

charge density, per unit volume (signed)
nondimensional voltage perturbation, eq. (16)
nondimensional voltage, V/VO

value of ¢ at minimum point of type C curve

associated with curve a, eq. (B1l2)

actual

19
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b associated with curve b, eq. (Bl4)
a associated with curve d, eq. (B15)
e associated with ion emitter (at xg)

i, or j vector components 1, 2, and 3

i tensor

n associated with neutralizing grid (at x,)

0 associated with accelerating grid (at x = 0)

+, - properties associated with ions and electrons, respectively
Superscript:

! denotes differentiation with respect to §

A)IC=-T
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APPENDIX B

ONE-DIMENSIONAL CHARGED BEAM WITHOUT CURRENT REVERSAL

The equatlons of motion for & one-dimensional, single-species
charged beam are integrated herein assuming all the charges move in the
+x direction and neglecting random thermsl motions. Flows with current
reversal are considered in appendix C. The solutions apply equally for
positively or negatively charged beams, and the subscripts + and -
are therefore omitted. These solutions have been previously obtained in
reference 11 (see also, ref. 12) and are rederived here to facilitate
discussion. They are applied in the body of the report to describe the
ion beam in the acceleration and deceleration portions of an ion rocket.

The equations of motion for a one-dimensional charged beam are

Conservation of charge: pgv = J (Bla)

Poisson's equation: IE = %9 (B1b)
0

Momentum equation: g g% = pgE (Blc)

The voltage is related to the electric field by

E=-3 (B2)
dx

Since (pq/pm) = n 1is a constant, equation (Blc) can be integrated to
yield (defining V to be zero when v = 0)

v = A2V (83)

For positive ions, n is positive and V is negative (or zero). Com-
bining equations (Bla), (Blb), (B2), and (B3) yields

2 :

asv -

2" sz (B)
dx oA -en

which can be integrated to find the variation of V with x. It is
convenlent first to nondimensionalize the dependent and independent
variables with respect to conditions at x = O. Thus, replace (V,x) by
the variables (9,£) defined according to

9 = L (B5a)
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£ =2 ,/d (BSb)
LY m ]

v
. = 4 0
v = - 5 oN-21V __Lz (B6)

where

The quantity jM is the maximum current (i.e., the space-charge-limited
current) that can be obtained with an emitter-accelerator spacing L

and a voltage difference Vp. Equation (B6) is often referred to as
Child's law (ref. 13). Equation (B4) can then be written

" = % A/iﬁ (B7)
where the prime indicates differentiation with respect to £. The
boundary conditions may be taken to be .
9(0) =1 (Bsa)
¢'(0) = 9} (given) (B8D) '

Integration of equation (B7), with the boundary conditions noted in
equation (B8), yilelds

v =2t NG - [1_116(%)2] (Bo)

Two types of solutions are possible depending on whether the constant in
the brackets of equation (B9) is nonnegative or negative. The two cases
are termed type C and type D flows, respectively (in approximate accord-
ance with the notation of refs. 11 and 12). Thus, introduce the non-
negative parameters ¢* and B such that

2
[ - = (cpg))] = Afo* >0 Type C (B10a)
9 el _
1-35 (cpo) =-AB<0 Type D (B10Db)
These parameters can now be used instead of ¢!. Note that @' =0
when ¢ = @* (from egs. (B9) and (B10a)). The corresponding value of i
€ 1s denoted by t°. Hence, type C integral curves are characterized

by the fact that there is a point (§*,®*) on the curve of @ against
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£ at which ¢

= 0. There is no such critical point on the type D
integral curves. 1

Equation (B9) can be integrated to find analytic expressions for the
type C and D integral curves. These curves are discussed separately.

Type C Curves

Substituting @* into equation (B9) and integrating between the
points (E*,9*) and (&,9) yield

E - &% = 2N + 24/0%) AlAfD - A% 2 ex  (Blla)

where (since ¢ = 1 when & = 0)

% = £(1 + 20/0%) Al1 - Afp% 9y S 0 (B11b)

Typical type C curves (characterized by the parameter ¢*) are presented
in figure 2 for £ > 0. The curves for & < O are the mirror image of
those for & > 0. Curve a, in figure 2, is the envelope of the type C
curves. The integral curve corresponding to a given value of ¢* is
drawn as a solid line for the portion upstream of its tangency point
with curve a and is drawn as a dash-dot-dash line for the downstream
portion. The reason for this distinction will be noted presently.

The equation of curve a is found by eliminating £* in equation

(Blla) (using eq. (B1llb)) and maximizing & with respect to @* holding
@ constant. The result is

- (1 + A7
D)

urr
|

(B12)

The point of tangency for a given type C curve with curve a is found
from

o* = /(1 + A/p)E

or (B13)

o = p*/(1 - Afo%)?

lmig classification of type C and D curves is consistent with ref-
erences 11 and 12 with one exception. Integral curves for which ¢§&*
is negative are included among type C curves herein and are included
among the type D curves (characterized by & parameter a) in references
11 and 12.
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Curve b, in figure 2, is the right-hand branch of the ¢¥*¥ = 0 curve and
has the equation (from eq. (Blla) with E¥ =1, o* = 0)

1+ @3/4

§b(¢)

Curve d is the locus of the critical points on the type C integral curves
and is given by (from eq. (Bllb))

(1 +249) A1 - Ao

= ga(@)

£

"

(B14)

3
(B15)

The region bounded by curves a and b is one for which o* is a
double-valued function of (&,p). That is, two type C curves pass through
each point of this region. (Curve b is included but curve a is excluded
from this region of double-valuedness.) The circled point in figure 2
is an example. Both the o¢¥* = 0.1 and the o¥* = 0.4 integral curves
pass through this point. Note that at the circled point the o¢¥* = 0.4
curve is solid (i.e., it is upstream of its tangent point with curve a),
while the o¢* = 0.1 curve is a dash-dot-dash line (i.e., it is down-
stream of its tangent point with curve a). Reference 11 has shown that
if continuous changes in operating conditions (say, in current) are made
for a given one-dimensional electrode configuration, starting from bound-
ary conditions for which the flow is unique, then operation in the double-
valued region between curves a and b will always correspond to the curve
with the larger value of ¢*. That 1s, operation will be along the solid
lines in figure 2, and not along the dash-dot-dash lines. (The latter
are termed type C overlap curves in ref. 11.) Further discussion of the
lack of uniqueness of one-dimensional beam flows is given in appendix C.

Type D Curves
Substituting equation (BlOb) into (B9) and integrating between the
limits (&,p) and (0,1) yield
> 4/3

g = 2(+/@ - 24/B) /A0 + A/BF(L - 24/B) A1 + A/B (cpc'><-4/3)

(B16)

These curves are also plotted in figure 2 for several values of B and
£ >0. For @) < -4/3, each type D curve terminates at ¢ = O, where

v _ 4 1/4
o - st gl
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Electric Field and Velocity

The electric field at any point on a type C or type D curve is
found from (egs. (B2), (B5), (B9), and (B10))

E__ é./i,/ _
:v57i = % 3\ iy AP - APF Type C

(B17a)
=% % A[jhAAIAJE;+ A/E- Type D
for @' 2 0. The velocity is (eqs. (B3) and (BSa))
v =Af-2nVo9 (B17b)
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APPENDIX C

ONE-DIMENSIONAL CHARGED BEAM WITH CURRENT REVERSAL

In appendix B, one-dimensional single-species charged beam flows
were considered wherein the particles all moved in the +x direction.
Tt was found that no integral curves existed downstream of curve a in
figure 2. It is now assumed that current reversal occurs at some station
in the beam so that two-way currents exist upstream of this station.
Such flows, termed type B flows in reference 11, will be shown to have
integral curves that fall downstream of curve a in figure 2. In addi-
tion, an ion-rocket configuration will be considered where the neutral-
izing grid is sufficiently far downstream of the accelerating grid to
induce ion current reversal between these two grids. The variation of
the transmitted ion current with neutralizing-grid voltage and the pos-
sibility of hysteresis effects and instability will be noted. The latter
discussion will require that no electrons be present between the accel-
erating and neutralizing grids and is applicable only when (1) the neu-
tralizing grid is not emitting electrons (as may occur in the laboratory
in the course of an experimental development program), or (2) electrons
are prevented from moving upstream of the neutralizing grid (such as by
using separate deceleration and neutralization grids with the latter at
a higher voltage than the former).

Assume a current je is emitted at some grid and moves in the

+x direction. Because of downstream boundary conditions, a virtual grid
is assumed to exist such that part (jr) of the current reverses and part
(j) is transmitted through the virtual grid (see sketch (d)).

Virtual

|grid
— Je | .

| 7%
-~

[

1

(a)

For ioms, Jeo and Jy are positive quantities while J,. 1is negative.
From continuity,

Je = 3y + (=Jp) (c1)

al Wa P -
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Assuming the charged particles to have been emitted with zero velocity
at zero voltage, the velocity at any point is

v =1 Af-2qV (c2)

where the negative sign is used for the reflected particles. The total
charge density upstream of the virtual grid is then

o = Je + Jr
a A-2nV  -pf-2qV
_ Je t+ (-dz) = Jtot (c3)
A/=-2nV -2V

where Jyot = Je + (-Jp) is the sum of the magnitudes of the emitted and

reflected currents. DPoisson's equation for the region upstream of the
virtual grid then becomes

a2V ot

axf  eqa 2V

Similarly, Poisson's equation for the downstream region of the virtual
grid is

(C4a)

v T4

&P eqn/oEnV

Integration of equations (C4), with suitable boundary conditions, defines
the flow upstream and downstream of the virtual grid.

(C4b)

As in the body of the report, consider an emitter at x, and an
accelerating grid at x = 0 with a spacing L and voltage difference
Vo. A virtual grid is assumed downstream of x = O (see sketch (e)).

| | .

| —_— | —= e |,

| e | e

l I |

|‘ L i’l l Virtual grid
X 0

(e)
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Z =1
P
)
.2
B cpn
0
] 1
0 1 x, /L
(£)
Assume that the emitter is space-charge-limited so that, at X,
p=2_0 (cs)

dx

where o = V/VO. Integration of equation (C4a) with the boundary condi-
tions given by equation (C5) and ¢ = 1 at x = O shows (for
-1 < x/L <0)

_o.a- 234 (c6a)

. __4 - Yo
Jeot = M = = 5 oV-Elo 3 (cev)

This is the Child's law result previously obtained (eq. (3)), except that
the current Jji i = Jy 1is the sum of downstream (Je) and upstream (-J,.)
moving currents.

At the virtual grid the velocity and electric field are each zero
so that the boundary conditions are given by equation (C5). Integration
of equation (C4a) then gives (for 0 < T < 1)

X1 - oo/t (c7)
L
showing that the virtual grid is at x = L. Equation (C7) is the mirror

image of equation (C6a) (see sketch (f)) and is again Child's law.

To find the flow downstream of x = L, equation (C4b) is integrated

with the boundary conditions ¢ = 4@ 0 at x =1L, and the result is
dx
(for x/L > 1)

(& 2)4f5s -0 (ce)

~r s



29

Ilet Z be the ratio of the transmitted to the emitted current

Z = — (Ccoa)

_;:Ji‘.zl-z j-l:JOt=2—Z _Jt = ZZ (Cgb)
Je Je Jtot 2 -

Equation (C8) can then be written

-7 3[4
2-7, /

7 (c10)

=1+

[l b

Plots of equation (Cl0), for various values of Z, are indicated in
sketch (f) and in figure 3. These curves differ in appearance from those
in figure 2 of reference 11, since the abscissa in the latter figure is

(x/L) A 3e/ I

For a given emitter and accelerator, the transmitted current will
depend on the location and voltage of the neutralizing grid. (Substitu-
tion of x, and @, into eq. (Cl0) defines Z and therefore Ji.)
Thus Z = 0.2 for the values of @, and x, indicated by the square
data point in sketch (f).

The type B curves represent a valid description of the flow between
the accelerating and neutralizing grids of an ion rocket if the neutral-
izing grid is not emitting electrons. If electrons are emitted they
will be attracted upstream and will modify the flow. A particular solu-
tion of a mixed ion-electron beam, upstream of the neutralizing grid, is
presented in the body of the report.

Pigures 2 and 3 indicate that, when the ion emitter of an ion rocket
is space-charge-limited (jio¢ = Jy), three different integral curves pass
through each point in the region between curves a and b (assuming no
electrons, from the neutralizing grid, are present ). Two are type C
curves (one of which is a type C overlap curve), and the third is a type
B curve. If the neutralizing grid operates in the region between curves
a and b, discontinuous changes in transmitted current may occur as the
neutralizing-grid potential is varied. This is now discussed (following
refs. 11 and 12).

Consider a neutralizing grid to be located at x, as indicated in
figures 4(a) and (b). The emitter is assumed to be space-charge-limited.
When ©@p equals ®n, 1 (point 1 in fig. 4), only one integral curve is
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possible (¢* = 9]), and all the current is transmitted (i.e., ji/jy =1
in fig. 4(c)). When @y is decreased to ¢p p, two type C curves are
possible, either the type C o* = @2 curve or the type C overlap curve
®* = 0 (whose branch downstream of x/L = is curve b). In either case
211 current is still transmitted. If the integral curves are assumed to
vary continuously (when possible) as @, is decreased, then operation
will be along ©O%* = 95. Similarly, as ¢p is reduced to Ppn,3, opera-
tion will then be along o@* = wg rather than along the type C overlap
curve through point 3. Further reduction of @, to Qn,4 results in
operation along O* = @Z. Since point 4 is on curve a, ¢n,4 is the

lowest value of @, for which operation along a type C curve is possible.

An infinitesimal decrease in ¢, causes the integral curve to shift
discontinuously to & type B curve (indicated by Z = Z, in fig. 4(a)),
and only part of the emitted current is transmitted (see fig. 4(c)).
Further decreases in ?y to ¢n,5’ Qn,6’ and Qn,? = 0 result in
operation along the type B curves Zg, Zg, and Z7 = 0. The correspond-
ing variation in jy 1is indicated in figure 4(c).

Now consider the sequence as ¢, 1is increased from Qn 7= 0 to
Py o Again assuming that the integral curves vary contlnuously (when
Y

possible) as ¢, Iincreases, then operation will be along the type B

curves defined by Zq to Zp, respectively. The transmitted current
increases continuously until jt/jM = 1 at point 2 (fig. 4(c)). As

¢, 1increases above Pn, 25 @ discontinuous change from type B to type
C curves occurs with jt = Jue

Figure 4(c) indicates a hysteresis loop in the variation of jt/jM
with ©@,. The upper branch of the hysteresis loop corresponds to type C
operation, while the lower branch corresponds to type B operation. With
decreasing @,, the change from type C to type B operation occurs dis-
continuously at curve a. With increasing g, the change from type B to
type C occurs discontinuocusly at curve b. The validity of the assumption
that the integral curves vary continuously, when possible, as @, is
varied, requires that operation along type B and type C curves is stable
(with respect to small disturbances). Otherwise there may be discon-
tinuous changes from type B to type C (including overlap) operation, and
vice versa, for any value of ¢, in the range @,(x,) <@, < wb(;n)

If electrons are emitted at £p, the flow in the region 0 < & < &y
will probably correspond to that indicated in figure 5(b) (as discussed
in the body of the report).

RIC="T
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APPENDIX D

MOMENTUM- INTEGRAL METHOD FOR THRUST EVALUATION

The thrust of Jet engines is often evaluated by applying an integral
form of the law of conservation of momentum, the thrust of the engine
being related to the flux of momentum and surface stresses at an arbitrary
control surface enclosing the engine. When applying this method to ion-
rocket engines it is necessary to consider electromagnetic surface
stresses as well as fluid surface stresses. Although the appropriate
form of the momentum conservation law, including these stresses, is well
known in magnetohydrodynemic studies (e.g., ref. 14) the specific appli-
cation to ion engines does not seem to have been discussed explicitly in
the current literature. Therefore, such a discussion is undertaken here-
in. In particular, the integral form of the law of conservation of mo-
mentum is derived for flows of charged particles in the presence of
electric and magnetic fields. The resulting expression is then applied
to find the thrust of a one-dimensional ion rocket. Ilocal properties
are assumed independent of time; mks units are used.

Let S be a simple closed surface, fixed in space, and let ¥ Dbe
the enclosed volume (sketch (g)). The law of conservation of momentum

X5,V

X5V,

Xy,vy

(g)

’/S.pmvivj as; =‘ll./xi av (p1)

can be written
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assuming steady state, neglecting random thermal motion, and assuming that

all particles have the same local properties (mass, velocity, charge) at

each point in the flow.2 Cartesian tensor notation is used. Repeated -
indices are summed. The left side of equation (D1) gives the net rate of
increase of the momentum of the particles entering and leaving S. The

term on the right side is the net electromagnetic body force acting on the
particles within ¥ (gravitational forces are neglected). The electro-
magnetic body force per unit volume X; can be expressed as the diver-

gence of the Maxwell stress tensor (ref. 15). Thus (for steady state),

Xy = _Ji (D2)

where
1
Tji = EjDi + HjBi -3 Bij(Eka + HkBk)

Substituting equation (D2) into equation (D1) and applying the divergence
theorem (assuming Xj is regular in %) yield :

L PrV4V3 de = ‘L Tji de (D3)
which is an alternative form of the law of conservation of momentum.

Equation (D3) can be used to find the net force on an arbitrary
body in the presence of charged particles and electromagnetic fields.
Let the control surface S consist of three parts, namely, an arbitrary
surface enclosing the body (8'), a surface taken directly about the body
(8"), and a slit (S''') which connects S' to S". The slit S'''

2For a multiple-specie stream of particles, with N distinct
species, the integrands in equation (Dl) represent the sums

N
meivj = :Z: (meivj)r
r=1
N
r=1

where (pmvivj)r and (Xi)r are the values for the rth specie. Similar

summations are required if the particles have thermal motion. An alter-

native approach, in the case of thermal motion, is to let pg, vi, and -
X; represent local mean values (suitably defined) and introduce a fluid
surface stress tensor into equation (D1) (e.g., ref. 14).
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excludes the body from the interior of S' (sketch (h)), thereby assuring
the regularity of X; in ¥ and permitting application of the

iy,

das

S =8"+ 8"+ 8"

(n)
divergence theorem. Evaluating equation (D3) for the surface
S =8"+ 8"+ 8""" gives
v,v, a8, = T,.,. dS, D4
./;’+S" pml‘j J .[S’+S" it o)

(The net contribution of the slit S'' is zero.) But, the net force
exerted on the body, denoted by F;, can be expressed as

where the minus sign is required because here dSs is an inward normal
with respect to the body surface (sketch (h)). In the latter expression
the Tji term represents the electromagnetic surface stresses on the
body, and the pmyivj term is the reaction if particles impinge on or

are emitted at the surface. The net force on the body can then be found
by the following surface integration about S' (from eq. (D4)):

Fy =/, (Tji - pmvivj) dSJ. (D5)
S

Thus the net force can be found by integrating the surface stresses and
the momentum flux about an arbitrary surface S' enclosing the body.
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For an ion rocket that does not employ magnetic fields, the
magnetic-field terms in equation (D2) can be neglected.3 Also,
Dj = €oEj, so that T35 becomes -

B s
— 1J
Tji = eo(FiEj - =3 EkEk) (Ds)
It can be shown (e.g., ref. 15) that the resultant surface force,

Tjj d8j, on a surface element dS3, associated with a local electric
field Ej, is such that E; bisects the angle between T;j dS; and

6LS-H

3It can be shown that the self-induced magnetic field, associated
with an ion beam of finite width, 1s negligible. Consider an ion beam
of radius R undergoing a Child's law acceleration through a length L
and voltage difference Vg (sketch (i)). Characteristic quantities are -

E; ~ VO/Iv
By
N
]
R
—_— By
Ji
| I |

vi ~ Ao Jj = Pgvy ~ eo4/ﬁvg/2/&?. The characteristic magnetic field
at the edge of the beam is B; ~ Mpj4R, which follows from Mexwell's

equation VxB= pdj. The ratio of the magnetic-field force to the
electric-field force at the edge of the beam is then

- 2
(F)mag _ pqV X §'~ v4By _ ViR
(F)elec pq Ey cz L

where 02 = l/poeo is the square of the speed of light. For specific

impulses and geometries of current interest, the induced magnetic-field
effects are negligible.
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ds; (sketch (j)). Thus, if E; is normal to the surface, the resultant
force is a tension regardless of the direction of E; (sketches (k) and

(m)). If E; is parallel to the surface, the resultant force is a
compression (sketch (1)).

» T.., dS

AALERRRARNNY

o r————ccenen——
T3 95;

ALLNANRARANY

(6 = 90°) (8 = 180°)
(1) (m)

Substitution of equation (D6) into (D5) gives

5, .
F, = ./s‘ [€O<E1Ej - _;sl EkEk) - pmvivj] as, (o7)

For a one-dimensional beam (E; # 0, vp % 0, Ep = Ez =vp =vz = H; = 0),
the force exerted by the fluid between stations (Xl)a and (xl)B is

eoEi , (%) B
xl)a

fi=

vhere f; is the force per unit cross-sectional area, and (Xl)B > (x9) g

The term pmvg represents the local flux of momentum, = while éOEl/Z

represents a tensive surface force, as noted in connection with sketches
(k) and (m). Thus, -GOEE/Z is a compressive surface force and

4“For a multiple-specie flow me% represents the total flux of

momentum (e.g., footnote 2). This term equals twice the local kinetic
energy for the present case of one-dimensional flow.
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corresponds to the pressure term, p, in ordinary one-dimensional fluid
mechanics. The subscript 1 is superfluous for strictly one-dimensional
flows and is henceforth omitted. -

It is instructive to find an integral of equation (Bl). Combining
equations (Blb) and (Blc) gives

E_Jdv_ D9
€oE ax o & 0 (D9)
Integrating,
2
E =
€ 5 - % v = const (D10a)
or
2
€ %? - pmyz = const (D10b)

Comparison of equation (D10b) with equation (D8) shows that no thrust
force is developed between two points on a single integral curve satis-
fying equation (B1). However, if grids are permitted, thrust can be
developed; and the thrust arises, in fact, from forces on these grids.

The force on a grid is most easily evaluated by teking x, and
xg to be an infinitesimal distance upstream and downstream of the grid,

respectively. Thus, the force on & grid at Xg is
x_+€"
eOEZ o g
(f)x = lim 5 = PyV (D11)
& e™0 xg-e"

If no particles impinge on or originate at the grid, then pmyz is a
continuous function of x near Xg (since the potential V is a con-
tinuous function of x), and the force on the grid becomes
X +€"
GOE2 g
(f)y = ltm | = (p12)

g e"> 0O Xg—e"

If particles originate at or impinge on the grid, then the full equation
(eq. (D11)) must be used. As an example, consider the force on a con-
ducting "target" due to impingement of an ion beam (sketch (n)). .

ol e TSN r~ g
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(n)

Station Xg does not contribute, since E = v = 0. The force on the

target is then
2
<o
f -[. - v%]
( )Xg > o

XCL
2
€
oo um |28 52 (D13)
11 2 m 11"
€ =0 €

Xg-

Both the local electric field and the local flux of momentum contribute
to (f)xg- Such a target can be used to measure the thrust of an ion

rocket. The force on the target is equal and opposite to the ion-rocket
thrust, if particles are not emitted (from the target) with significant
momentum in the x direction.

Equations (D8) and (D12) are used in the body of the report to
compute the overall thrust and the thrust force on the grids of an ion
rocket.
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(a) Grid system.

P <

(b) Voltage distribution.

Figure 1. - One-dimensional ion rocket employing accelerate-decelerate cycle.
. Ions are emitted by grid at x. and are accelerated by grid at x = 0.
Grid at x decelerates ion beam and emits sufficient electrons to

n
neutralize it.
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Figure 4. - Illustration of possible hysteresis effects as neutral-

ization grid potential Pn

is varied. It is assumed that ion

emitter is space-charge-limited (ji 4 = Jy) and that no electrons
are present.
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Figure 5. - Modification of type C curve in deceleration region
(0< ¢t < gn) due to presence of electrons from neutralizing grid.
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